
Verification of the Session Management Protocol

A Formal Methods Case Study

Karl Palmskog

School of Computer Science and Communication
Royal Institute of Technology

2006-11-02

Karl Palmskog Verification of the Session Management Protocol



Goals

I Examplify formal methods for verification of software

I Report on the verification of the Session Management
Protocol

I Highlight the view of concurrency as interaction

Karl Palmskog Verification of the Session Management Protocol



Formal Methods: An Example

The mutual exclusion problem for the concurrent processes P0 and
P1 using shared memory:

I Each process wants to access a shared resource, but both
processes must not get access simultaneously

I A process using the resource is in its “critical section”

Karl Palmskog Verification of the Session Management Protocol



Formal Methods: An Example

Peterson’s algorithm for mutual exclusion

bool b0 := false; bool b1 := false; int k := 0;

P0:
while true do

〈noncritical section〉;
b0 := true;
k := 1;
await(¬b1 ∨ k = 1);
〈critical section〉;
b0 := false;

end while

P1:
while true do

〈noncritical section〉;
b1 := true;
k := 0;
await(¬b0 ∨ k = 0);
〈critical section〉;
b1 := false;

end while

Karl Palmskog Verification of the Session Management Protocol



Formal Methods: An Example

How can we convince ourselves that this algorithm works?

I By inspection?

I By implementing and testing it?

I By proving it correct?

Karl Palmskog Verification of the Session Management Protocol



Formal Methods: An Example

General formal methods methodology

1. Understand the program

2. Model the program in a suitable formalism

3. Specify the correctness of the program

4. Prove that the model satisfies the specification

Karl Palmskog Verification of the Session Management Protocol



Formal Methods: An Example

Peterson’s algorithm as a communication protocol

I P0 and P1 exchange messages with a memory process Pm

I Variable names are message types

I Values are message content

I Writing a variable means sending a message to Pm

I Reading a variable means receiving a message from Pm

Karl Palmskog Verification of the Session Management Protocol



Formal Methods: An Example

Promela model

mtype = {b0,b1,k};

bool proc0InCrit = false;
bool proc1InCrit = false;

chan mem0 = [0] of {mtype,bit};
chan mem1 = [0] of {mtype,bit};

run Memory(mem0, mem1, false, false, 0);
run Process0(mem0);
run Process1(mem1);

Karl Palmskog Verification of the Session Management Protocol



Formal Methods: An Example

proctype Process0(chan mem) {
BEGIN:

mem!b0,true; mem!k,1;
do

:: mem?b1,false; break;
:: mem?b1,true;
:: mem?k,0; break;
:: mem?k,1;

od;
proc0InCrit = true;
proc0InCrit = false;
mem!b0,false;
goto BEGIN;

}

proctype Process1(chan mem) {
BEGIN:

mem!b1,true; mem!k,0;
do

:: mem?b0,false; break;
:: mem?b0,true;
:: mem?k,0;
:: mem?k,1; break;

od;
proc1InCrit = true;
proc1InCrit = false;
mem!b1,false;
goto BEGIN;

}

Karl Palmskog Verification of the Session Management Protocol



Formal Methods: An Example

Correctness of Peterson’s algorithm
“For all executions, there are no states where both proc0InCrit

and proc1InCrit have assumed the value true.”

In Linear Temporal Logic:

� (¬(p0c ∧ p1c))

where

#define p0c proc0InCrit == true

#define p1c proc1InCrit == true

Karl Palmskog Verification of the Session Management Protocol



Session Layer Resurgence

Problem situation

I Demand for new network services

I Aging Internet architecture

I Need to handle mobility and nomadicity

I Lots of extensions of TCP/IP: MIP, HIP, IPSec, . . .

Proposed solution

I Adopt a more flexible view of the protocol stack

I Introduce new functionality at the session layer

I Use event-driven reconfiguration and state management

Karl Palmskog Verification of the Session Management Protocol



Session Layer Resurgence

Karl Palmskog Verification of the Session Management Protocol



Session Layer Resurgence

Session layer components

I Event collector/dispatcher

I Preferences/rules database

I Socket rebind extension

I Session API

I TCP state controller

I Session Management Protocol (SMP)

Karl Palmskog Verification of the Session Management Protocol



Session Layer Resurgence

Session-enabled
application

Session-enabled
application

Legacy
application

Session Management API

Session Management Protocol

Event collector
and dispatcher

Rebind-enhanced socket API

TCP state
controller

Preferences and
rules database

Transport layer protocols

Network layer protocols

Rebind across
the stack

Karl Palmskog Verification of the Session Management Protocol



Session Layer Resurgence

Session Management Protocol

I Data integrity for sessions

I Keep track of communication state

I Send and and receive context updates

Karl Palmskog Verification of the Session Management Protocol



Session Layer Resurgence

SMP channels and message types

I Data channel
I data — application data
I checkpoint — communication state data

I Control channel
I resume — request session resumption
I resume ok — confirm session resumption
I resume denied — deny session resumption
I suspend — sender has suspended

Karl Palmskog Verification of the Session Management Protocol



Session Layer Resurgence

State machine

SENT_RESUME

ACTIVE

SUSPENDED

READY_RESUME

T3
T1

T4

T2

T19

T10

T11

T6

T5

T7

T9

T8

T12

T13

T17 T16
T18 T15

T14

T1:   Network lost
T2:   User suspends; send suspend 
T3:   Received resume; rebind
T4:   Received suspend
T5:   User suspends
T6:   Received resume
T7:   Network changed
T8:   Received resume; send resume_denied
T9:   User resumes
T10: Sent resume_ok; rollback
T11: Failed to send resume_ok
T12: Sent resume
T13: Failed to send resume
T14: Received resume_ok
T15: Received resume_denied
T16: Network changed; rebind
T17: Received resume; initiator
T18: Received resume; not initiator
T19: Network lost; change interface

Karl Palmskog Verification of the Session Management Protocol



Verification of SMP

Starting point

I Verify the checkpoint mechanism

I Lets endpoints know where to resume

I Limited scope, well-defined protocol

I Important for the correctness of SMP

Karl Palmskog Verification of the Session Management Protocol



Verification of SMP

Prerequisites
A,B : network endpoints
SA,SB : sequences of words of data
S i

A: the ith word of a sequence

I Goal for A: transfer all words in SA to B , in order

I Goal for B : transfer all words in SB to A, in order

Service provisions
The purpose is to let A and B continually agree on at least one
tuple 〈i , j〉, such that:

I A has received S0

B ,S1

B , . . . ,S j−1

B properly

I B has received S0

A,S1

A, . . . ,S i−1

A properly

Karl Palmskog Verification of the Session Management Protocol



Verification of SMP

Environmental assumptions

I Executed in the context of an established session

I Endpoints use buffered, reliable data channels

I Disconnection is not possible

Procedure rules

I Same for both endpoints

I Maintain acknowledged and pending checkpoints/tuples

I After filling up the buffer, create a new checkpoint

I Send checkpoint message with checkpoint id and number of
bytes sent/received

I Do not create checkpoints until a reply has been received

I Update checkpoint definition using reply data

Karl Palmskog Verification of the Session Management Protocol



Verification of SMP

Safety specification
“The endpoints always have a checkpoint in common”:

� ((ak → (akSn ∧ akRc)) ∧ (akPn → (akPnSn ∧ akPnRc)) ∧

(pnAk → (pnAkSn ∧ pnAkRc)) ∧ ((ak ∧ ¬akPn ∧ ¬pnAk) ∨

(¬ak ∧ akPn ∧ ¬pnAk) ∨ (¬ak ∧ ¬akPn ∧ pnAk)))

Liveness specification
“Endpoints always eventually reach a state from which they can
receive and send data”:

(�♦ inAct) ∧ (�♦ ninAct)

Karl Palmskog Verification of the Session Management Protocol



Verification of SMP

Promela model

mtype = {data,cp};

typedef dataMsg {
mtype type;
byte cpId;
byte cpSent;
byte cpRecd;

}

chan point1Recv = [queueSize] of {dataMsg};
chan point2Recv = [queueSize] of {dataMsg};

run Endpoint(point1Recv, point2Recv, 0);
run Endpoint(point2Recv, point1Recv, 1);

Karl Palmskog Verification of the Session Management Protocol



Verification of SMP

Correcting the protocol

I Only the connection initiator can send checkpoint requests

I Needs to know session data buffer size of peer

I Only one stream position field in checkpoint message

Verification results

I Exhaustive verification with partial-order reduction

I No counterexamples found

I Without compression, would use 10-20 GB of memory

Karl Palmskog Verification of the Session Management Protocol



Verification of SMP

State machine correctness

I Safety: if a session is resumed, it is resumed properly

I Liveness: there are no deadlocks

State machine model

I Add control channels and states to checkpoint protocol model

I Use Promela’s channel over channel feature for mobility

I Protocol changes during rollback due to checkpoint error

Verification results

I Exhaustively verified for some parameters

I Many partial state-space searches

Karl Palmskog Verification of the Session Management Protocol



Conclusions

Verification of SMP

I Unambiguous specification of the protocol

I Detection and correction of a design error

I Better understanding of the session layer

Spin

I Mature and very powerful tool

I Can be used by non-experts...

I ...but does not provide “push-the-button” verification

Formal methods

I Not just for researchers

I Should be integrated in development to increase reliability

Karl Palmskog Verification of the Session Management Protocol



Future Work

I Implement changes and test them

I Verify other parts of the session layer design

I Investigate SMP/TCP interaction

I Proceed to the next step in industrial applications of formal
methods

“Every protocol should be considered incorrect until the
opposite is proven.”
—Gerard J. Holzmann, author of Spin

Karl Palmskog Verification of the Session Management Protocol



More Information

K. Palmskog. Verification of the Session Management
Protocol. Master’s thesis, KTH, 2006.
http://www.palmskog.net/exjobb

Y. Ismailov, K. Palmskog, P. Arvidsson, M. Widell and Y.
Wang. Session Layer Resurgence: Towards Mobile,
Disconnection- and Delay-tolerant Communication. In
Proceedings of the 4th European Conference on Universal
Multiservice Networks (ECUMN’2007), February 2007.
http://www.irit.fr/ecumn07

Karl Palmskog Verification of the Session Management Protocol


