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Goals

I Examplify formal methods for verification of software

I Report on the verification of the Session Management
Protocol

I Highlight the view of concurrency as interaction
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Formal Methods: An Example

The mutual exclusion problem for the concurrent processes P0 and
P1 using shared memory:

I Each process wants to access a shared resource, but both
processes must not get access simultaneously

I A process using the resource is in its “critical section”
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Formal Methods: An Example

Peterson’s algorithm for mutual exclusion

bool b0 := false; bool b1 := false; int k := 0;

P0:
while true do

〈noncritical section〉;
b0 := true;
k := 1;
await(¬b1 ∨ k = 1);
〈critical section〉;
b0 := false;

end while

P1:
while true do

〈noncritical section〉;
b1 := true;
k := 0;
await(¬b0 ∨ k = 0);
〈critical section〉;
b1 := false;

end while
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Formal Methods: An Example

How can we convince ourselves that this algorithm works?

I By inspection?

I By implementing and testing it?

I By proving it correct?
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Formal Methods: An Example

General formal methods methodology

1. Understand the program

2. Model the program in a suitable formalism

3. Specify the correctness of the program

4. Prove that the model satisfies the specification

Karl Palmskog Verification of the Session Management Protocol



Formal Methods: An Example

Peterson’s algorithm as a communication protocol

I P0 and P1 exchange messages with a memory process Pm

I Variable names are message types

I Values are message content

I Writing a variable means sending a message to Pm

I Reading a variable means receiving a message from Pm
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Formal Methods: An Example

Promela model

mtype = {b0,b1,k};

bool proc0InCrit = false;
bool proc1InCrit = false;

chan mem0 = [0] of {mtype,bit};
chan mem1 = [0] of {mtype,bit};

run Memory(mem0, mem1, false, false, 0);
run Process0(mem0);
run Process1(mem1);
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Formal Methods: An Example

proctype Process0(chan mem) {
BEGIN:

mem!b0,true; mem!k,1;
do

:: mem?b1,false; break;
:: mem?b1,true;
:: mem?k,0; break;
:: mem?k,1;

od;
proc0InCrit = true;
proc0InCrit = false;
mem!b0,false;
goto BEGIN;

}

proctype Process1(chan mem) {
BEGIN:

mem!b1,true; mem!k,0;
do

:: mem?b0,false; break;
:: mem?b0,true;
:: mem?k,0;
:: mem?k,1; break;

od;
proc1InCrit = true;
proc1InCrit = false;
mem!b1,false;
goto BEGIN;

}
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Formal Methods: An Example

Correctness of Peterson’s algorithm
“For all executions, there are no states where both proc0InCrit

and proc1InCrit have assumed the value true.”

In Linear Temporal Logic:

� (¬(p0c ∧ p1c))

where

#define p0c proc0InCrit == true

#define p1c proc1InCrit == true
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Session Layer Resurgence

Problem situation

I Demand for new network services

I Aging Internet architecture

I Need to handle mobility and nomadicity

I Lots of extensions of TCP/IP: MIP, HIP, IPSec, . . .

Proposed solution

I Adopt a more flexible view of the protocol stack

I Introduce new functionality at the session layer

I Use event-driven reconfiguration and state management
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Session Layer Resurgence
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Session Layer Resurgence

Session layer components

I Event collector/dispatcher

I Preferences/rules database

I Socket rebind extension

I Session API

I TCP state controller

I Session Management Protocol (SMP)
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Session Layer Resurgence

Session-enabled
application

Session-enabled
application

Legacy
application

Session Management API

Session Management Protocol

Event collector
and dispatcher

Rebind-enhanced socket API

TCP state
controller

Preferences and
rules database

Transport layer protocols

Network layer protocols

Rebind across
the stack
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Session Layer Resurgence

Session Management Protocol

I Data integrity for sessions

I Keep track of communication state

I Send and and receive context updates
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Session Layer Resurgence

SMP channels and message types

I Data channel
I data — application data
I checkpoint — communication state data

I Control channel
I resume — request session resumption
I resume ok — confirm session resumption
I resume denied — deny session resumption
I suspend — sender has suspended

Karl Palmskog Verification of the Session Management Protocol



Session Layer Resurgence

State machine

SENT_RESUME

ACTIVE

SUSPENDED

READY_RESUME

T3
T1

T4

T2

T19

T10

T11

T6

T5

T7

T9

T8

T12

T13

T17 T16
T18 T15

T14

T1:   Network lost
T2:   User suspends; send suspend 
T3:   Received resume; rebind
T4:   Received suspend
T5:   User suspends
T6:   Received resume
T7:   Network changed
T8:   Received resume; send resume_denied
T9:   User resumes
T10: Sent resume_ok; rollback
T11: Failed to send resume_ok
T12: Sent resume
T13: Failed to send resume
T14: Received resume_ok
T15: Received resume_denied
T16: Network changed; rebind
T17: Received resume; initiator
T18: Received resume; not initiator
T19: Network lost; change interface

Karl Palmskog Verification of the Session Management Protocol



Verification of SMP

Starting point

I Verify the checkpoint mechanism

I Lets endpoints know where to resume

I Limited scope, well-defined protocol

I Important for the correctness of SMP
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Verification of SMP

Prerequisites
A,B : network endpoints
SA,SB : sequences of words of data
S i

A: the ith word of a sequence

I Goal for A: transfer all words in SA to B , in order

I Goal for B : transfer all words in SB to A, in order

Service provisions
The purpose is to let A and B continually agree on at least one
tuple 〈i , j〉, such that:

I A has received S0

B ,S1

B , . . . ,S j−1

B properly

I B has received S0

A,S1

A, . . . ,S i−1

A properly
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Verification of SMP

Environmental assumptions

I Executed in the context of an established session

I Endpoints use buffered, reliable data channels

I Disconnection is not possible

Procedure rules

I Same for both endpoints

I Maintain acknowledged and pending checkpoints/tuples

I After filling up the buffer, create a new checkpoint

I Send checkpoint message with checkpoint id and number of
bytes sent/received

I Do not create checkpoints until a reply has been received

I Update checkpoint definition using reply data
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Verification of SMP

Safety specification
“The endpoints always have a checkpoint in common”:

� ((ak → (akSn ∧ akRc)) ∧ (akPn → (akPnSn ∧ akPnRc)) ∧

(pnAk → (pnAkSn ∧ pnAkRc)) ∧ ((ak ∧ ¬akPn ∧ ¬pnAk) ∨

(¬ak ∧ akPn ∧ ¬pnAk) ∨ (¬ak ∧ ¬akPn ∧ pnAk)))

Liveness specification
“Endpoints always eventually reach a state from which they can
receive and send data”:

(�♦ inAct) ∧ (�♦ ninAct)
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Verification of SMP

Promela model

mtype = {data,cp};

typedef dataMsg {
mtype type;
byte cpId;
byte cpSent;
byte cpRecd;

}

chan point1Recv = [queueSize] of {dataMsg};
chan point2Recv = [queueSize] of {dataMsg};

run Endpoint(point1Recv, point2Recv, 0);
run Endpoint(point2Recv, point1Recv, 1);
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Verification of SMP

Correcting the protocol

I Only the connection initiator can send checkpoint requests

I Needs to know session data buffer size of peer

I Only one stream position field in checkpoint message

Verification results

I Exhaustive verification with partial-order reduction

I No counterexamples found

I Without compression, would use 10-20 GB of memory
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Verification of SMP

State machine correctness

I Safety: if a session is resumed, it is resumed properly

I Liveness: there are no deadlocks

State machine model

I Add control channels and states to checkpoint protocol model

I Use Promela’s channel over channel feature for mobility

I Protocol changes during rollback due to checkpoint error

Verification results

I Exhaustively verified for some parameters

I Many partial state-space searches
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Conclusions

Verification of SMP

I Unambiguous specification of the protocol

I Detection and correction of a design error

I Better understanding of the session layer

Spin

I Mature and very powerful tool

I Can be used by non-experts...

I ...but does not provide “push-the-button” verification

Formal methods

I Not just for researchers

I Should be integrated in development to increase reliability
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Future Work

I Implement changes and test them

I Verify other parts of the session layer design

I Investigate SMP/TCP interaction

I Proceed to the next step in industrial applications of formal
methods

“Every protocol should be considered incorrect until the
opposite is proven.”
—Gerard J. Holzmann, author of Spin
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